## A New Lignan and Four New Lignan Glycosides from Mananthes patentiflora

by Junmian Tian<sup>a</sup>)<sup>b</sup>), Xiaojiang Hao<sup>a</sup>), and Hongping He<sup>\*a</sup>)

 <sup>a</sup>) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, P. R. China (phone: +86-871-5223263; fax: +86-871-5150227; e-mail: hehongping@mail.kib.ac.cn)
<sup>b</sup>) Graduate University, Chinese Academy of Science, Beijing 100039, P. R. China

A new lignan, 5-hydroxyjusticidin A (=9-(1,3-benzodioxol-5-yl)-5-hydroxy-4,6,7-trimethoxynaphtho[2,3-c]furan-1(3H)-one; 1), and four new diphyllin-type lignan glycosides, mananthosides C-F (2-5), containing glucosyl (Glc), arabinosyl (Ara), galactosyl (Gal), and/or apiosyl residues, have been isolated from *Mananthes patentiflora*, together with five known compounds. Their structures and configurations were elucidated by in-depth 1D- and 2D-NMR experiments, as well as MS analysis.

**Introduction.** – Mananthes patentiflora (HEMSL.) BREMEK. is a Chinese herb from which several lignans have been isolated [1]. In the search for cytotoxic constituents from this plant [1-3], a new arylnaphthalene lignan named 5-hydroxyljusticidin A (1), and four new lignan glycosides, mananthosides C-F (2-5), were isolated from the aerial parts of the plant, together with the five known compounds justicidin A [4][5], mananthoside A [1], mananthoside B [1], arabelline [6], and tuberculatin [7][8].

**Results and Discussion.** – Compound **1** was obtained as a yellow, amorphous powder, with the molecular formula  $C_{22}H_{18}O_8$ , as determined by positive-ion HR-ESI-MS  $(m/z \ 433.0907 \ ([M+Na]^+; calc. \ 433.0899))$ . The UV spectrum was typical for an arylnaphthalene system; and IR bands at 1764 and 934 cm<sup>-1</sup> suggested the presence of a  $\gamma$ -lactone and a OCH<sub>2</sub>O group, respectively [9]. In the <sup>1</sup>H-NMR spectrum of **1** (Table 1), there were four aromatic H-atoms: one signal appeared at  $\delta(H) \ 6.67 \ (s, H-C(8))^1)$ , together with an *ABX* system characteristic of a 1,3,4-trisubstituted aromatic unit ( $\delta(H) \ 6.95 \ (d, J=7.8, 1 \ H)$ ; 6.66  $(dd, J=7.8, 1.5, 1 \ H)$ ; 6.77  $(d, J=1.5, 1 \ H)$ ).

In the HMBC spectrum (*Fig. 1*), correlations between  $CH_2(7')$  at  $\delta(H)$  6.08/6.07 (2s) and C(3') and C(4') at  $\delta(C)$  148.4, and 148.2, resp., confirmed the presence of an OCH<sub>2</sub>O moiety. The HMBC correlation between  $CH_2(12)$  at  $\delta(H)$  5.64 (s) and C(11) at  $\delta(C)$  169.2 confirmed the presence of a  $\gamma$ -lactone. In fact, both the <sup>1</sup>H- and the <sup>13</sup>C-NMR spectra of **1** (*Tables 1* and 2, resp.) were very similar to those of justicidin A [4][5]. However, the lack of a signal at *ca.*  $\delta(H)$  7.5 (H–C(5)) suggested that C(5) was substituted in **1**. This was confirmed by a ROESY correlation between the 5-OH group at  $\delta(H)$  9.46 (s) and the 4-MeO moiety at  $\delta(H)$  4.28 (s).

© 2006 Verlag Helvetica Chimica Acta AG, Zürich

<sup>1)</sup> Arbitrary atom numbering. For sytematic nams, see Exper. Part.



From the above data, in combination with further results from HSQC, HMBC, <sup>1</sup>H,<sup>1</sup>H-COSY, and ROESY spectra, the structure of **1** was deduced as 5-hydroxyjusticidin A.

The molecular formula of compound **2** was determined as  $C_{33}H_{36}O_{16}$  by negative-ion HR-ESI-MS (m/z 687.1911 ( $[M-H]^-$ ; calc. 687.1925)). The UV spectrum was typical for an aryInaphthalene [9], and the IR spectrum showed OH (3426),  $\gamma$ -lactone (1747), and aromatic absorption bands (1623 cm<sup>-1</sup>) [10][11]. The <sup>1</sup>H-NMR spectrum of **2** (*Table 1*) indicated five aromatic H-atoms<sup>2</sup>), two resonances at  $\delta$ (H) 8.12 and 7.05, and an *ABX* system characteristic of a 1,3,4-trisubstituted unit ( $\delta$ (H) 6.95 (d, J=7.8); 6.77 (dd, J=7.8, 1.5); 6.78 (d, J=1.5)). Two  $\gamma$ -lactone CH<sub>2</sub> H-atoms at  $\delta$ (H) 5.58, 5.45 (2d, J=15.1 each) were non-equivalent, similar to those of arabelline [6].

<sup>&</sup>lt;sup>2</sup>) Some <sup>1</sup>H-NMR signals of 2-5 were split due to atropisomerism.

|                                                                  | 1                       | 2                                 | 3                                           | 4                                 | 5                                      |
|------------------------------------------------------------------|-------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|
| H–C(5)                                                           |                         | 8.12/8.11 (s) <sup>a</sup> )      | 7.55(s)                                     | 8.14 (s)                          | 7.68 (s)                               |
| H–C(8)                                                           | 6.67 (s)                | 7.05 (s)                          | $7.00/6.98 (s)^{a}$                         | $7.00/6.97 (s)^{a}$               | $7.00/6.99 (s)^{a}$                    |
| $CH_{2}(12)$                                                     | 5.64(s)                 | 5.58(d, J = 15.1),                | 5.72 (d, J = 15.1),                         | 5.74 (d, J = 15.4),               | 5.49(d, J = 14.8),                     |
| ~ /                                                              | . /                     | 5.45 (d, J = 15.1)                | 5.45 (d, J = 15.1)                          | 5.45 (d, J = 15.4)                | 5.43 (d, J = 14.8)                     |
| H–C(2')                                                          | 6.77 $(d, J = 1.5)$     | 6.78 ( <i>d</i> , <i>J</i> =1.5)  | $6.75/6.74 (d, J=1.5)^{a})$                 | 6.80/6.71 (s) <sup>a</sup> )      | 6.72 (s)                               |
| H–C(5')                                                          | 6.95 (d, J = 7.8)       | 6.95 ( <i>d</i> , <i>J</i> =7.8)  | $6.94/6.93 (d, J=7.8)^{a})$                 | 6.93 ( <i>d</i> , <i>J</i> =7.8)  | $6.92/6.90 (d, J=7.5)^{a})$            |
| H–C(6')                                                          | 6.66 (dd, J = 7.8, 1.5) | 6.77 ( $dd$ , $J = 7.8$ , 1.5)    | $6.74/6.72 \ (dd, J \approx 7.7, 1.5)^{a})$ | 6.75 ( <i>d</i> , <i>J</i> =7.8)  | 6.69(d, J=7.5)                         |
| $CH_{2}(7')$                                                     | 6.08, 6.07 (2s)         | 6.05, 6.04 (2s)                   | 6.04, 6.02 (2s)                             | 6.04, 6.03 (2s)                   | 6.04, 6.02 (2s)                        |
| 4-MeO                                                            | 4.28 (s)                |                                   |                                             |                                   |                                        |
| 6-MeO                                                            | 3.85 (s)                | 4.01 (s)                          | 4.02(s)                                     | 3.97 (s)                          |                                        |
| 7-MeO                                                            | 3.69(s)                 | 3.72 (s)                          | 3.69(s)                                     | $3.69/3.67 (s)^{a}$               | 3.61 (s)                               |
| H–C(1")                                                          |                         | 4.82 (d, J = 7.9)                 | 5.33 (d, J = 5.0)                           | 4.86(d, J = 7.7)                  | 5.61 (d, J = 2.4)                      |
| H–C(2")                                                          |                         | 3.69 ( <i>m</i> )                 | 5.59 ( <i>m</i> )                           | 4.10 ( <i>m</i> )                 | 4.55(d, J=2.4)                         |
| H–C(3")                                                          |                         | 3.57 (m)                          | 4.21 ( <i>m</i> )                           | 3.89 ( <i>m</i> )                 |                                        |
| H–C(4") or                                                       |                         | 3.33 (m)                          | 5.61 ( <i>m</i> )                           | 5.52 (m)                          | 4.28(d, J = 12.0),                     |
| CH <sub>2</sub> (4")                                             |                         |                                   |                                             |                                   | 3.90(d, J = 12.0)                      |
| H–C(5")                                                          |                         | 3.47 ( <i>m</i> )                 | 4.19 ( <i>m</i> )                           | 3.94 ( <i>m</i> )                 | 3.77 (s)                               |
| H–C(6") or                                                       |                         | 1.41 (d, J = 6.0)                 | 3.87 (dd, J = 12.0,                         | 3.83 (d, J = 9.9),                |                                        |
| CH <sub>2</sub> (6'')                                            |                         |                                   | 2.3),                                       | 3.66 (dd, J = 9.9,                |                                        |
|                                                                  |                         |                                   | 3.69 ( <i>m</i> )                           | 2.8)                              |                                        |
| 2''-AcO                                                          |                         |                                   | 2.11(s)                                     |                                   |                                        |
| 4"-AcO                                                           |                         |                                   | 2.20(s)                                     | 2.19(s)                           |                                        |
| H–C(1''')                                                        |                         | 4.41 (d, J = 7.9)                 | 4.42 (d, J = 7.8)                           | 4.55 (d, J=7.2)                   | 5.30(d, J=3.6)                         |
| H–C(2''')                                                        |                         | 3.22 ( <i>m</i> )                 | 3.12 ( <i>m</i> )                           | 3.23 ( <i>m</i> )                 | 4.10(d, J=3.6)                         |
| H–C(3''')                                                        |                         | 3.36 ( <i>m</i> )                 | 3.30 ( <i>m</i> )                           | 3.37 ( <i>m</i> )                 |                                        |
| H–C(4 <sup>'''</sup> ) or<br>CH <sub>2</sub> (4 <sup>'''</sup> ) |                         | 3.29 ( <i>m</i> )                 | 3.23 ( <i>m</i> )                           | 3.25 <i>(m)</i>                   | 4.15 (d, J = 12.0), 3.93 (d, J = 12.0) |
| H–C(5''')                                                        |                         | 3.38 (m)                          | 3.27 ( <i>m</i> )                           | 3.28 (m)                          | 3.61 (s)                               |
| CH <sub>2</sub> (6''')                                           |                         | 3.92 (dd, J = 11.9,               | 3.87 (dd, J = 12.0,                         | 3.85 (d, J = 12.0),               |                                        |
|                                                                  |                         | 1.8),                             | 2.3),                                       | 3.61 ( <i>dd</i> ,                |                                        |
|                                                                  |                         | 3.67 ( <i>d</i> , <i>J</i> =11.9) | 3.63 ( <i>dd</i> , <i>J</i> =12.0, 6.0)     | J=12.0, 5.5)                      |                                        |
| H–C(1'''')                                                       |                         |                                   | 4.19(d, J = 6.9)                            | 4.17 (d, J = 6.6)                 |                                        |
| H–C(2'''')                                                       |                         |                                   | 3.53 (m)                                    | 3.46 ( <i>m</i> )                 |                                        |
| H–C(3'''')                                                       |                         |                                   | 3.41 ( <i>m</i> )                           | 3.42 ( <i>m</i> )                 |                                        |
| H–C(4'''')                                                       |                         |                                   | 3.76 ( <i>m</i> )                           | 3.76 (s)                          |                                        |
| CH <sub>2</sub> (5'''')                                          |                         |                                   | 3.82 (dd, J = 12.4,                         | 3.75 (d, J = 12.0),               |                                        |
|                                                                  |                         |                                   | 3.0),<br>3.47 ( <i>d</i> , <i>J</i> =12.4)  | 3.43 ( <i>d</i> , <i>J</i> =12.0) |                                        |

Table 1. <sup>*i*</sup>*H-NMR Data of* **1**–**5**. At 400 MHz and 25° in (D<sub>6</sub>) acetone (for **1**) or in CD<sub>3</sub>OD (for **2**–**5**);  $\delta$  in ppm, *J* in Hz. Arbitrary atom numbering.

<sup>a</sup>) Signal splitting due to atropisomerism (slow rotation about the glycosidic linkage to the aglycone). The aromatic H-atoms are, thus, exposed to two different environments, and the sugar H-atoms may either lie above or below the plane of the naphthalide ring system [6].



Fig. 1. Key HMBC and ROESY correlations for 1-3

The <sup>1</sup>H- and <sup>13</sup>C-NMR data of **2** (*Tables 1* and 2, resp.), and a FAB-MS signal at m/z 379 (C<sub>21</sub>H<sub>15</sub>O<sub>7</sub>) suggested the presence of a diphyllin<sup>3</sup>) unit [1][7].

The <sup>1</sup>H-NMR spectrum of **2** also exhibited a series of sugar signals at  $\delta(H)$  3.20–3.93, with two anomeric H-atoms at  $\delta(H)$  4.82, 4.41 (2d, J=7.9 each). By means of HSQC, HMBC, and <sup>1</sup>H,<sup>1</sup>H-COSY experiments, the signals at  $\delta(C)$  106.4, 75.4, 76.3, 86.4, 72.5, and 18.2 could be assigned to a 6-deoxyglucosyl moiety [12]. The second sugar unit was found to be a glucosyl (Glc) group, with signals at  $\delta(C)$  105.1, 75.1, 78.0, 71.5, 78.2, and 62.6 [13]. The 6-deoxyglucosyl moiety was linked to C(4) of the diphyllin, as inferred from an HMBC correlation between H–C(1") at  $\delta(H)$  4.82 (d, J=7.9) and C(4) at  $\delta(C)$  146.4 (*Fig. 1*). The downfield shift of C(4") suggested that the Glc residue was at C(4") of the 6-deoxyglucose, which was supported by HMBC correlations between H–C(1"') at  $\delta(H)$  4.41 (d, J=7.9) and C(4") at  $\delta(C)$  86.4. Comparison of the <sup>13</sup>C-NMR data of the two sugar moieties with literature values revealed that they were both present in their pyranoside forms [12][13]. Their configurations at the anomeric centers were determined as  $\beta$ , based on coupling constants of 7.9 Hz each for H–C(1") at H-C(1"') [12][13].

From the above data, in combination with further results from HSQC, HMBC, and <sup>1</sup>H,<sup>1</sup>H-COSY experiments, the structure of **2** was assigned as  $4-O-(6-\text{deoxy}-4-O-\beta-D-\text{glucopyranosyl})diphyllin, and named$ *mananthoside C*.

The molecular formula of compound **3** was  $C_{42}H_{48}O_{23}$ , based on negative-ion HR-ESI-MS (m/z 919.2514 ( $[M-H]^-$ ; calc. 919.2508)). The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **3** (*Tables 1* and 2) were similar to those of **2**, except for the sugar resonances.

The aglycone of **3** also corresponded to diphyllin [1][7]. Anomeric resonances at  $\delta$ (H) 5.33 (*d*, J=5.0), 4.42 (*d*, J=7.8), and 4.19 (*d*, J=6.9), resp., suggested that **3** contained three sugar units. The <sup>13</sup>C-NMR signals at  $\delta$ (C) 101.8, 72.3, 79.1, 72.3, 75.3, and 69.2 indicated a galactosyl (Gal) group [1][14], and those at  $\delta$ (C) 106.2, 74.8, 78.1, 71.4, 78.0, 63.0, and at  $\delta$ (C) 105.1, 72.4, 74.3, 69.5, 66.8,

<sup>&</sup>lt;sup>3</sup>) Diphyllin = 9-(1,3-benzodioxol-5-yl)-4-hydroxy-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one.

|          | 1          | 2                  | 3                  | 4                     | 5                |
|----------|------------|--------------------|--------------------|-----------------------|------------------|
| C(1)     | 135.4 (s)  | 137.7 (s)          | 136.6 (s)          | 137.6 (s)             | 137.1 (s         |
| C(2)     | 121.7 (s)  | 120.0 (s)          | 120.5 (s)          | 120.2 (s)             | 119.2 (s         |
| C(3)     | 125.2(s)   | 132.2(s)           | 127.1(s)           | 132.3(s)              | 129.7 (s)        |
| C(4)     | 150.2 (s)  | 146.4(s)           | 145.9 (s)          | 146.2(s)              | 145.7 (s)        |
| C(5)     | 147.8 (s)  | 102.8(d)           | 101.9(d)           | 102.9(d)              | 105.9 (d         |
| C(6)     | 137.6 (s)  | 153.4 (s)          | 153.4 (s)          | 153.3(s)              | 150.9 (s)        |
| C(7)     | 154.7(s)   | 151.8(s)           | 151.8(s)           | 151.7(s)              | 150.9 (s)        |
| C(8)     | 99.5 $(d)$ | 107.1 (d)          | 107.0(d)           | 107.0(d)              | 106.9 (d         |
| C(9)     | 133.7(s)   | 128.9(s)           | 127.1(s)           | 128.9(s)              | 131.4 (s)        |
| C(10)    | 116.8(s)   | 132.0(s)           | 131.6(s)           | 131.8(s)              | 129.0 (s)        |
| C(11)    | 169.2(s)   | 172.1(s)           | 172.1(s)           | 172.4(s)              | 172.2 (s)        |
| C(12)    | 67.2(t)    | 69.1(t)            | 69.2(t)            | 69.5(t)               | 68.8(t)          |
| C(1')    | 129.8(s)   | 130.0(s)           | 130.0(s)           | 130.0(s)              | 130.2 (s)        |
| C(2')    | 111.5(d)   | 111.8(d)           | 111.8(d)           | $112.0/111.7 (d)^{a}$ | 111.8 (d         |
| C(3')    | 148.4(s)   | 149.0(s)           | 148.9(s)           | 148.9 (s)             | 148.9 (s)        |
| C(4')    | 148.2(s)   | 149.0(s)           | 148.9(s)           | 148.9(s)              | 148.9 (s)        |
| C(5')    | 108.7(d)   | 109.0(d)           | 109.0(d)           | $109.0/108.9 (d)^{a}$ | 108.9 (d         |
| C(6')    | 124.4(d)   | 124.7(d)           | 124.8(d)           | $124.9/124.8 (d)^{a}$ | 124.7(d          |
| C(7')    | 102.1(t)   | 102.6(t)           | 102.6(t)           | 102.6(t)              | 102.5(t)         |
| 4-MeO    | 61.5(a)    | (-)                |                    | (-)                   |                  |
| 6-MeO    | 60.5(q)    | 56.8(a)            | 56.8(a)            | 56.7(a)               |                  |
| 7-MeO    | 55.8(a)    | 56.1(a)            | 56.0(a)            | 56.0(a)               | 56.0 (a          |
| C(1'')   |            | 106.4(d)           | 101.8(d)           | 106.5(d)              | 111.3 (d         |
| C(2'')   |            | 75.4(d)            | 72.3(d)            | 72.0(d)               | 85.3 (d          |
| C(3'')   |            | 76.3(d)            | 79.1(d)            | 82.4(d)               | 81.1 (s)         |
| C(4'')   |            | 86.4(d)            | 72.3(d)            | 72.3(d)               | 75.9(t)          |
| C(5'')   |            | 72.5(d)            | 75.3(d)            | 74.6(d)               | 65.0(t)          |
| C(6'')   |            | 18.2(a)            | 69.2(t)            | 69.5(t)               | 0010 (1)         |
| 2″-AcO   |            | 1012 (4)           | 21.4(a)            |                       |                  |
| 2 1100   |            |                    | 172.1(s)           |                       |                  |
| 4″-AcO   |            |                    | 20.9(a)            | 21.0(a)               |                  |
| 1 1100   |            |                    | 172.6(s)           | 173.0(s)              |                  |
| C(1''')  |            | 105.1(d)           | 106.2(d)           | 105.8(d)              | 111 6 ( <i>d</i> |
| C(2''')  |            | 751(d)             | 74.8(d)            | 755(d)                | 78.2 (d          |
| C(3''')  |            | 78.0(d)            | 78.1(d)            | 77.8(d)               | 80.5 (s)         |
| C(4''')  |            | 70.0(d)<br>71.5(d) | 70.1(d)<br>71.4(d) | 71.5(d)               | 75.3(t)          |
| C(5''')  |            | 78.2(d)            | 78.0(d)            | 78.1(d)               | 65.2(t)          |
| C(6''')  |            | 62.6(t)            | 63.0(t)            | 62.9(t)               | 05.2 (1)         |
| C(1''')  |            | 02.0 (1)           | 105.1(d)           | 104.9(d)              |                  |
| C(2'''') |            |                    | 724(d)             | 721(d)                |                  |
| C(2''')  |            |                    | 72.7(a)<br>74.3(d) | 72.1(a)<br>74.1(d)    |                  |
| C(4'''') |            |                    | 695(d)             | 69.3(d)               |                  |
| C(5"")   |            |                    | 66.8(t)            | 66.5(t)               |                  |
|          |            |                    | 00.0 (1)           | 00.5(l)               |                  |

Table 2. <sup>13</sup>*C*-*NMR Data of* **1**–**5**. At 125 MHz and 25° in (D<sub>6</sub>)acetone (for **1**) or in CD<sub>3</sub>OD (for **2**–**5**);  $\delta$  in ppm. Arbitrary atom numbering.

resp., were assigned to glucosyl (Glc) and arabinosyl (Ara) moieties [1][13]. The signals at  $\delta(C)$  172.1, 172.6, 21.4, and 20.9 suggested the presence of two AcO groups, which could be located at C(2") and C(4") of the Gal residue by HMBC correlations between H–C(2") at  $\delta(H)$  5.59 (*m*) and  $\delta(C)$  172.1, and between H–C(4") at  $\delta(H)$  5.61 (*m*) and  $\delta(C)$  172.6, respectively. Further HMBC correlations between H–C(1") at  $\delta(H)$  5.33 (*d*, *J*=5) and C(4) at  $\delta(C)$  145.9 indicated that the Gal unit was linked to the 4-O-atom of diphyllin. Interglycosidic linkages of the (1  $\rightarrow$  3) and (1  $\rightarrow$  6) types were confirmed by HMBC correlations between H–C(1"") at  $\delta(H)$  4.42 (*d*, *J*=7.8) of the Glc unit and C(3") of Gal at  $\delta(C)$  79.1, and between H–C(1"") at  $\delta(H)$  4.19 (*d*, *J*=6.9) of the Ara unit and C(6") of Gal at  $\delta(C)$  69.2. The coupling constants of the anomeric resonances, 5.0, 7.8, and 6.9 for H–C(1""), H–C(1""), and H–C(1""), respectively, indicated the configurations of the Gal, Glc, and Ara residues as  $\beta$ ,  $\beta$ , and  $\alpha$ , respectively [1][13][14].

From the above data, compound **3** was identified as 4-*O*-{ $\alpha$ -L-arabinopyranosyl-(1  $\rightarrow$  6)-[ $\beta$ -D-glucopyranosyl-(1  $\rightarrow$  3)]-2,4-di-*O*-acetyl- $\beta$ -D-galactopyranosyl}diphyllin, and named *mananthoside D*.

The molecular formula of compound **4** was deduced as  $C_{40}H_{46}O_{22}$ , based on negative-ion HR-ESI-MS (m/z 877.2411 ( $[M-H]^-$ ; calc. 877.2402). There were only minor differences between the spectroscopic data of **3** and **4**, the aglycone of **4** also being diphyllin.

By means of HSQC, HMBC (*Fig. 2*), and <sup>1</sup>H,<sup>1</sup>H-COSY experiments, a Gal ( $\delta$ (C) 106.5, 72.0, 82.4, 72.3, 74.6, 69.5), a Glc ( $\delta$ (C) 105.8, 75.5, 77.8, 71.5, 78.1, 62.9), and an Ara moiety ( $\delta$ (C) 104.9, 72.1, 74.1, 69.3, 66.5) were identified. The HMBC correlation between H–C(1") at  $\delta$ (H) 4.86 (*d*, *J*=7.7) and C(4) at  $\delta$ (C) 146.2 revealed that Gal was linked at C(4) of the diphyllin aglycone. According to <sup>13</sup>C-NMR and HMBC data, there was only one AcO group at C(4"), as inferred from the correlation between H–C(4") at  $\delta$ (H) 5.52 (*m*) and  $\delta$ (C) 173.0.

From the above data, compound 4 was identified as the mono-acetyl congener of 3, and named *mananthoside E*.

From negative-ion HR-ESI-MS (m/z 629.1489 ( $[M-H]^-$ ; calc. 629.1506)), the molecular formula of compound **5** was assigned as C<sub>30</sub>H<sub>30</sub>O<sub>15</sub>. The UV and IR data



Fig. 2. Key HMBC and ROESY correlations for 4 and 5

revealed the presence of an arylnaphthalene unit [9-11]. Compound **5** had to be similar to **4** by comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR data. However, there was only one MeO group in **5**.

The ROESY correlation between  $\delta(H) 3.61$  (*s*, MeO) and H-C(8) at  $\delta(H) 7.00$  (*s*) revealed that the MeO group was at C(7). The sugar moieties were identified as two apiofuranoses (=3-*C*-(hydroxy-methyl)- $\beta$ -D-erythrofuranoses), with resonances at  $\delta(C) 111.3$ , 85.3, 81.1, 75.9, 65.0, and at 111.6, 78.2, 80.5, 75.3, 65.2, respectively [7][8]. The sugar moiety was linked at C(4) of diphyllin, based on HMBC correlations (*Fig.* 2) between H–C(1") at  $\delta(H) 5.61$  (*d*, *J*=2.4) and C(4) at  $\delta(C) 145.7$ . The downfield shift of C(2") at  $\delta(C) 85.3$  suggested that the second apiose was linked at C(2") [7], which was supported by the HMBC correlation between H–C(1") at  $\delta(H) 5.30$  (*d*, *J*=3.6) with C(2") at  $\delta(C) 85.3$ . The coupling constants of the anomeric H-atoms were 2.4 and 3.6 Hz, in accord with  $\beta$ -configuration [7][8].

From the above data, compound **5** was deduced as 4-*O*-{2-*O*-[3-*C*-(hydroxymethyl)- $\beta$ -D-erythrofuranosyl]-3-*C*-(hydroxymethyl)- $\beta$ -D-erythrofuranosyl}-6-*O*-demethyldi-phyllin, and named *mananthoside F*.

## **Experimental Part**

General. Column chromatography (CC):  $C_{18}$  reverse-phase silica gel (60 µm; Merck) and Sephadex LH-20 (Amershan Biosciences). Melting points (m.p.): Yuhua 104 melting-point apparatus; uncorrected. UV Spectra: Shimadzu 210A double-beam spectrophotometer;  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. Optical rotations: Horiba SEPA-300 spectropolarimeter. IR Spectra: Bio-Rad FTS-135 spectrophotometer, KBr pellets, in cm<sup>-1</sup>. 1D- and 2D-NMR Spectra: Bruker AM-400 and DRX-500 spectrometers, resp.;  $\delta$  in ppm, J in Hz. EI-MS, FAB-MS (neg.), and HR-ESI-MS: VG Autospec-3000 spectrometer; in m/z.

*Plant Material.* The aerial parts of *Mananthes patentiflora* (HEMSL.) BREMEK. were collected in the *Xishuangbanna* district, Yunnan province, P. R. China, in August, 2004. The plant was identified by Prof. *Deding Tao*, and a voucher specimen (BN0408133) was deposited at the herbarium of the Kunming Institute of Botany, Yunnan, P. R. China

*Extraction and Isolation.* The EtOH extract of the air-dried aerial parts of *M. patentiflora* (6.9 kg) was suspended in H<sub>2</sub>O (2.5 l), and extracted successively with AcOEt and BuOH. The AcOEt soln. was evaporated, and the residue (200 g) was purified by CC (2 kg SiO<sub>2</sub>; petroleum ether/AcOEt mixtures of increasing polarity): eleven fractions (*Fr. 1–11*). *Fr. 5* (12 g) was subjected to repeated CC (SiO<sub>2</sub>; petroleum ether/AcOEt 7:3) to afford **1** (15 mg) and justicidin A (1.39 g) [4][5]. *Fr.* 9 (15.2 g) was also purified by repeated CC (SiO<sub>2</sub>; CHCl<sub>3</sub>/MeOH 9:1) to provide **2** (7 mg), **5** (18 mg), mananthoside A (8 mg) [1], mananthoside B (10 mg) [1], and arabelline (15 mg) [6]. The above BuOH extract was evaporated, and the residue (7.0 g) was purified by CC (*D101*; H<sub>2</sub>O/acetone): two fractions (*Fr. A* and *B*). *Fr. B* (1.8 g) was purified by repeated CC (1. SiO<sub>2</sub>, CHCl<sub>3</sub>/MeOH 8:2; 2. *RP-18*, MeOH/H<sub>2</sub>O 6:4) to afford **3** (6 mg), **4** (13 mg), and tuberculatin (41 mg) [7][8]. The known compounds were identified by spectroscopic methods and by comparison with literature data.

5-Hydroxyjusticidin A (= 9-(1,3-Benzodioxol-5-yl)-5-hydroxy-4,6,7-trimethoxynaphtho[2,3-c]furan-1(3H)-one; **1**). Yellow, amorphous powder. M.p. 211–213°. UV (MeOH): 203 (4.66), 268 (4.53), 310 (3.69), 370 (3.58). IR (KBr): 3346, 3281, 2925, 2854, 1764, 1633, 1594, 1504, 1477, 1458, 1439, 1391, 1365, 1263, 1250, 1205, 1154, 1107, 1056, 1033, 1001, 977, 934. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 1* and 2, resp. EI-MS: 410 (100,  $M^+$ ), 365 (38), 335 (11), 305 (10), 190 (14). HR-ESI-MS (pos.): 433.0907 ([M+Na]<sup>+</sup>, C<sub>22</sub>H<sub>18</sub>NaO<sup>\*</sup><sub>8</sub>; calc. 433.0899).

*Mananthoside C* (=9-(1,3-Benzodioxol-5-yl)-4-[(6-deoxy-4-O- $\beta$ -D-glucopyranosyl- $\beta$ -D-glucopyranosyl)oxy]-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; **2**). Colorless, amorphous powder. M.p. 181–183°. UV (MeOH): 205 (4.53), 261 (4.50), 290 (3.86), 314 (3.84), 384 (2.62). [ $\alpha$ ]<sub>D</sub><sup>26</sup> = -13.7 (c = 0.3, MeOH). IR (KBr): 3426, 2923, 1747, 1623, 1508, 1481, 1435, 1386, 1342, 1264, 1230, 1168, 1070, 1036, 770. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 1* and 2, resp. FAB-MS (neg.): 779 (4, [M + Gly – H]<sup>-</sup>), 687 (23, [M – H]<sup>-</sup>), 379 (100). HR-ESI-MS (neg.): 687.1911 ([M – H]<sup>-</sup>, C<sub>33</sub>H<sub>35</sub>O<sub>16</sub>; calc. 687.1925).

*Mananthoside*  $D (=4-(\{\alpha-L-Arabinopyranosyl-(1 \rightarrow 6\})-[\beta-D-glucopyranosyl-(1 \rightarrow 3)]-2,4-di-O-ace-tyl-<math>\alpha$ -D-galactopyranosyl]oxy)-9-(1,3-benzodioxol-5-yl)-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; **3**). Colorless, amorphous powder. M.p. 185–187°. UV (MeOH): 195 (4.41), 205 (4.42), 224 (4.40), 261 (4.63), 294 (3.98), 315 (3.99), 346 (3.66).  $[\alpha]_{20}^{26} = -6.63 (c=0.4, \text{ MeOH})$ . IR (KBr): 3440, 2924, 1744, 1624, 1507, 1480, 1435, 1371, 1349, 1263, 1229, 1169, 1073, 1037, 770. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 1* and 2, resp. FAB-MS (neg.): 920 (25,  $M^-$ ), 379 (100). HR-ESI-MS (neg.): 919.2514 ( $[M - H]^-$ ,  $C_{42}H_{47}O_{23}^-$ ; calc. 919.2508).

*Mananthoside E* (=4-({*a*-L-*Arabinopyranosyl-*(*1* → 6)-[*β*-D-glucopyranosyl-(*1* → 3)]-4-O-acetyl-*a*-D-galactopyranosyl}oxy)-9-(*1*,3-benzodioxol-5-yl)-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; **4**). Colorless, amorphous powder. M.p. 186–187°. UV (MeOH): 205 (4.69), 261 (4.72), 315 (4.05). [a]<sub>26</sub><sup>26</sup> = -2.72 (*c* = 0.5, MeOH). IR (KBr): 3431, 2921, 1741, 1624, 1508, 1481, 1436, 1386, 1344, 1263, 1230, 1169, 1074, 1036, 770. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 1* and 2, resp. FAB-MS (neg.): 877 (31, [*M* − H]<sup>-</sup>), 379 (100). HR-ESI-MS (neg.): 877.2411 ([*M* − H]<sup>-</sup>, C<sub>40</sub>H<sub>45</sub>O<sub>22</sub>; calc. 877.2402).

*Mananthoside F* (=6-*Hydroxy-4-([2-O-[3-C-(hydroxymethyl)-β-D-erythrofuranosyl]-3-C-(hydroxymethyl)-β-D-erythrofuranosyl]<i>oxy*)-7-methoxynaphtho[2,3-c]*furan-1(3*H)-one; **5**). Colorless, amorphous powder. M.p. 158–160°. UV (MeOH): 203 (4.75), 224 (4.49), 263 (4.67), 290 (3.96), 323 (4.03).  $[\alpha]_D^{24} = -111.1 \ (c = 0.74, MeOH)$ . IR (KBr): 3424, 2925, 2890, 1744, 1625, 1509, 1494, 1455, 1439, 1390, 1342, 1269, 1228, 1207, 1169, 1124, 1106, 1065, 1035, 1003, 960, 930. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 1* and 2, resp. FAB-MS (neg.): 629 (100,  $[M-H]^-$ ), 364 (11). HR-ESI-MS (neg.): 629.1489 ( $[M-H]^-$ ,  $C_{30}H_{29}O_{15}^-$ ; calc. 629.1506).

## REFERENCES

- [1] B. Chen, Y. Liu, C. Feng, B. G. Li, G. L. Zhang, Chin. Chem. Lett. 2002, 13, 959.
- [2] J. Asano, K. Chiba, M. Tada, T. Yoshii, Phytochemistry 1996, 42, 713.
- [3] S. H. Day, Y. C. Lin, M. L. Tsai, L. T. Tsao, H. H. Ko, M. I. Chung, J. C. Lee, J. P. Wang, S. J. Won, C. N. Lin, J. Nat. Prod. 2002, 65, 379.
- [4] N. Fukmiya, K. H. Lee, J. Nat. Prod. 1986, 49, 348.
- [5] T. R. Govindachari, S. S. Sathe, N. Viswanathan, B. R. Pai, M. Srinivasan, *Tetrahedron Lett.* 1969, 25, 2815.
- [6] Y. A. Abed, S. Sabri, M. A. Zarga, Z. Shah, Atta-ur-Rahman, J. Nat. Prod. 1990, 53, 1152.
- [7] G. S. Nukul, M. H. Zarga, S. S. Sabri, D. M. Al-Eisawi, J. Nat. Prod. 1987, 50, 748.
- [8] G. M. Sheriha, K. M. A. Amer, Phytochemistry 1984, 23, 151.
- [9] A. C. Siani, M. D. G. B. Zoghbi, E. L. A. Wolter, I. Vencato, J. Nat. Prod. 1998, 61, 796.
- [10] G. V. Subbaraju, D. Rajasekhar, J. Kavitha, J. I. Jimenez, Ind. J. Chem., Sect. B 2001, 40, 313.
- [11] S. H. Day, N. Y. Chiu, L. T. Tsao, J. P. Wang, Y. C. Lin, J. Nat. Prod. 2000, 63, 1560.
- [12] M. Mori, S. Tejima, T. Niwa, Chem. Pharm. Bull. 1986, 34, 4037.
- [13] N. Li, A. Q. Jia, Y. Q. Liu, J. Zhou, Acta Bot. Yunnan. 2003, 25, 241.
- [14] L. Y. Zhou, Y. Hua, W. Ni, C. X. Chen, Acta Bot. Yunnan. 2004, 26, 349.

Received November 4, 2005